遺傳影響於運動表現(下篇)| Genetic influence on athletic performance

遺傳影響於運動表現(下篇)| Genetic influence on athletic performance

 

 

遺傳影響於運動表現

 

受傷風險

抵抗和/或從傷害中恢復的能力是獲得最佳表現的另一個關鍵因素。關於遺傳風險方面主要是有兩種損傷類型研究:腦震盪和肌腱病變。這些研究領域對於兒童運動員的技能發展尤為重要,因為傷害可能大幅度地減少訓練時間。此外,某些傷害可能會導致終身反覆出現問題。例如,與未曾受過腦震盪的運動員相比,幾十年前遭受腦震盪的運動員隨年齡增長表現出更多的大腦異常及更大幅度的認知能力下降[21]。更好地了解傷害風險和恢復的遺傳組成,能夠提升我們保護處於危險中的年輕運動員免於嚴重傷害和以最佳方式治療確切發生的傷害。

 

肌腱病變

提到肌腱病變,就不得不提到肌腱和韌帶的主要結構成分-膠原蛋白。令人不意外的是,兩個膠原蛋白編碼基因(COL1A1和COL5A1)的變異,一為參與結締組織傷口修復 (MMP3) 的基因,另一則是編碼細胞外基質蛋白TNC基因,都與肌腱病變風險增加有關[28, 29]。數個風險等位基因的存在似乎會進一步增加受傷風險[30]。與遺傳學及表現的大多數領域依樣,這些研究是最早提供相關證據的研究之一,仍有待驗證。

 

對年輕運動員的相關性

少有研究調查兒童或青少年運動員的遺傳變異與運動表現表型之間關係。考慮到對兒童進行進行基因檢測的潛在倫理考量。根據過往文獻報告,ACE II多態性與希臘青少女握力和垂直跳躍表現有顯著相關,但未體現於少年[31],這與 D 等位基因與成年人較好的力量及爆發力之間典型關聯形成鮮明對比。近期也發現ACE D等位基因與青春期少女較強握力[32]和中學學齡兒童的立定跳遠表現有關[31]。

 

ACTN3基因型與表現相關研究也在兒童族群中進行。無論訓練狀態如何,具有 ACTN3 RR基因型的男童往往游得更快(25和100公尺項目)[34]。R等位基因也與希臘青少年較好的40公尺衝刺表現有關[35]。具有RR基因型的青春晚期女性在仰臥起坐測試中表現優於具有RX基因型者[32]。然而,ACTN3基因型與青少年男女的其他幾種力量或耐力表型無關[32]。此外還有PPARA、PPARD 和 PPARGC1A基因型與兒童標準健康測試之間的其他相關性[32, 33]。總體來看,許多遺傳變異與兒童表現相關聯研究其有效性不足,且未能進行多重比較校正,因此目前還未能於此下定論。此外,用遺傳學預測運動表現背後的驅動力主要是為了及早識別成年後將成為傑出運動員的運動個體。

 

基因檢測

人才識別,即為在年輕時發現有前途的運動員,以便能更早進行特定/專門訓練。從過往歷史看來,人才識別一直是基於身心特質及運動專項表現。透過分析與套定特徵相關得基因變異組合,讓基因檢測得以提供一種額外方式來預測未受訓練的兒童的成人表現特徵。由於DNA序列在整個生命過程中都是恆定的,此可以在獲得DNA 樣本後立即進行基因檢測(在嬰兒期甚至出生前)。

 

雖然單一基因變異缺乏表現可預測性,但某些公司正在銷售聲稱可以做到此點的基因測試。測試用於經常研究的基因(例如ACTN3和ACE)以及其他科學證據相對較少的基因[36]。事實上,ACTN3的基因測試於2004年開發的,僅比 率先發表其與運動表現的潛在相關性的Yang等人晚了一年[16]。現在,這種測試無須處方就能夠直接銷售給教練及家長[37]。該公司奠基於此單一測試,將個體“遺傳優勢”解釋為“傾向於耐力項目”、“傾向於短跑/力量項目”或“同樣適合耐力和短跑/力量項目”等類別。但這並非唯一可用的直面消費者的基因測試,而是現有商業選擇的一個代表性案例。

 

除了測試變體的相關性基礎理論不足之外,多數教練、家長和運動員缺乏理解這些測試的局限性或其結果含義所需的科學背景。但些專業運動團隊已經在使用這些測試結果來部分性執導訓練處方[38, 39]。

遺傳因素對運動成績的複雜貢獻是否能用於改善人才辨別仍有待觀察。更重要的是要知道,遺傳關聯研究揭露了在人口級別上與運動表現特徵相關因素,並且任何給定變異對個體的相對重要性無疑是可變的,因此遺傳篩查不能用於最終預測或排除運動成功[40]。目前並不存在也不可能存在對於出色運動表現來說是絕對必要或決定性基因變異。

 

基因檢設預測損傷易感性的潛力,例如APOE基因型對腦震盪的反映,可能為提升運動員的安全性提供獨特而重要途徑。儘管目前尚未達成共識,但現有證據證實遺傳因素將成為傷害易感性的重要因素,且可能會在年輕運動員考慮參與體育運動時發揮其優勢。不過,正如Wackerhage等人近期回顧一樣,指涉運動表現的基因檢測相關倫理挑戰,特別是在兒童,尤為困難,需要謹慎思考。

 

結論

目前的證據證實,良好的遺傳特予適當的訓練相結合,即便對於實現菁英運動狀態並非至關重要的,仍舊是有利的。然而,雖然說某些變異基因已反覆地與精英運動表現出現相關性,但進行預測仍舊不夠充足,並且使用於人才辨別上仍為時過早。

 

關鍵重點

■ 運動員狀態以及許多心血管耐力及肌肉表型具有高度遺傳性,支持遺傳因素在取得運動成功中的作用。

■ ACE I/I基因型始終與耐力表現相關。

■ ACTN3 R/R基因型始終與以功率導向的表現相聯。

■ 遺傳變異可能會改變受傷風險或和/或受傷後的結果,但仍需更多研究支持。

■ 沒有任何遺傳變異達到預測運動成功的可預測性。

 

文獻參考

  1. Bray MS, Hagberg JM, Pérusse L, et al. The human gene map for performance and health-related fitness phenotypes: the 2006–2007 update. Med Sci Sports Exerc. 2009 Jan;41(1):35–73. [PubMed] [Google Scholar]

*2. Bouchard C. Genomic predictors of trainability. Experimental Physiology. 2012 Mar 13;97(3):347–52. This article reviews the existing literature on the genetic / genomic predictors of responses to endurance exercise training. [PubMed] [Google Scholar]

*3. Tucker R, Collins M. What makes champions? A review of the relative contribution of genes and training to sporting success. British Journal of Sports Medicine. 2012 Jun 10;46(8):555–61. This review discusses the interactions between genetic and environmental factors (specifically training or deliberate practice) and their respective influences on athletic performance. [PubMed] [Google Scholar]

  1. De Moor MHM, Spector TD, Cherkas LF, et al. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res Hum Genet. 2007 Dec;10(6):812–20. [PubMed] [Google Scholar]
  2. Silventoinen K, Magnusson PKE, Tynelius P, et al. Heritability of body size and muscle strength in young adulthood: a study of one million Swedish men. Genet Epidemiol. 2008 May;32(4):341–9. [PubMed] [Google Scholar]
  3. Peeters MW, Thomis MA, Loos RJF, et al. Heritability of somatotype components: a multivariate analysis. Int J Obes Relat Metab Disord. 2007 Mar 6;31(8):1295–301. [PubMed] [Google Scholar]
  4. Carter JE. The somatotypes of athletes–a review. Hum Biol. 1970 Dec;42(4):535–69. [PubMed] [Google Scholar]

*8. Costa AM, Breitenfeld L, Silva AJ, et al. Genetic inheritance effects on endurance and muscle strength: an update. Sports Med. 2012 Jun 1;42(6):449–58. This article reviews the existing family and twin studies of heritability of athletic performance-related traits. [PubMed] [Google Scholar]

  1. Bouchard C, Daw EW, Rice T, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc. 1998 Feb;30(2):252–8. [PubMed] [Google Scholar]
  2. Montgomery HE, Marshall R, Hemingway H, et al. Human gene for physical performance. Nature. 1998;393(6682):221–2. [PubMed] [Google Scholar]
  3. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. Journal of Clinical Investigation. 1990 Oct;86(4):1343–6. [PMC free article] [PubMed] [Google Scholar]
  4. Danser AH, Schalekamp MA, Bax WA, et al. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation. 1995 Sep 15;92(6):1387–8. [PubMed] [Google Scholar]
  5. Puthucheary Z, Skipworth JRA, Rawal J, et al. Genetic influences in sport and physical performance. Sports Med. 2011 Oct 1;41(10):845–59. [PubMed] [Google Scholar]
  6. Scott RA, Moran C, Wilson RH, et al. No association between Angiotensin Converting Enzyme (ACE) gene variation and endurance athlete status in Kenyans. Comp Biochem Physiol, Part A Mol Integr Physiol. 2005 Jun;141(2):169–75. [PubMed] [Google Scholar]

**15. Ma F, Yang Y, Li X, et al. The Association of Sport Performance with ACE and ACTN3 Genetic Polymorphisms: A Systematic Review and Meta-Analysis. In: Gonzalez GE, editor. PLoS ONE. 1. Vol. 8. 2013. Jan 24, p. e54685. This meta-analysis summarizes the associations between sports performance and ACTN3 R577X or ACE I/D genotype; the results support an association for the ACTN3 R allele and the ACE II genotype for power and endurance performance, respectively. [PMC free article] [PubMed] [Google Scholar]

  1. Yang N, MacArthur DG, Gulbin JP, et al. ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet. 2003 Sep;73(3):627–31. [PMC free article] [PubMed] [Google Scholar]
  2. Yang N, Garton F, North K. alpha-actinin-3 and performance. Med Sport Sci. 2009;54:88–101. [PubMed] [Google Scholar]

*18. Eynon N, Ruiz JR, Femia P, et al. The ACTN3 R577X Polymorphism across Three Groups of Elite Male European Athletes. In: Garatachea N, editor. PLoS ONE. 8. Vol. 7. 2012. Aug 16, p. e43132. This study adds further support to the association of the ACTN3 R577X polymorphism with elite athletic performance, with the XX genotype more frequently observed in elite endurance athletes and least frequently observed in power athletes [PMC free article] [PubMed] [Google Scholar]

**19. Eynon N, Hanson ED, Lucia A, et al. Genes for Elite Power and Sprint Performance: ACTN3 Leads the Way. Sports Med. 2013 May 17; This is a comprehensive review of the literature on the genetic variants associated with elite power-oriented sport performance, with special attention given to the association of the ACTN3 R577X genotype. [PubMed] [Google Scholar]

  1. Alfred T, Ben-Shlomo Y, Cooper R, et al. ACTN3 genotype, athletic status, and life course physical capability: meta-analysis of the published literature and findings from nine studies. Hum Mutat. 2011 Jul 20;32(9):1008–18. [PMC free article] [PubMed] [Google Scholar]

*21. Tremblay S, De Beaumont L, Henry LC, et al. Sports Concussions and Aging: A Neuroimaging Investigation. Cerebral Cortex. 2013 Apr 3;23(5):1159–66. This study observed alterations in brain imaging and cognitive function >3 decades following concussion in hockey players, demonstrating the potential for long-lasting impacts of concussion in youth or young adulthood. [PubMed] [Google Scholar]

  1. Donix M, Small GW, Bookheimer SY. Family History and APOE-4 Genetic Risk in Alzheimer’s Disease. Neuropsychol Rev. 2012 Feb 23;22(3):298–309. [PMC free article] [PubMed] [Google Scholar]
  2. Teasdale GM, Nicoll JA, Murray G, Fiddes M. Association of apolipoprotein E polymorphism with outcome after head injury. Lancet. 1997 Oct 11;350(9084):1069–71. [PubMed] [Google Scholar]
  3. Jordan BD, Relkin NR, Ravdin LD, et al. Apolipoprotein E epsilon4 associated with chronic traumatic brain injury in boxing. JAMA. 1997 Jul 9;278(2):136–40. [PubMed] [Google Scholar]
  4. Kristman VL, Tator CH, Kreiger N, et al. Does the apolipoprotein epsilon 4 allele predispose varsity athletes to concussion? A prospective cohort study. Clin J Sport Med. 2008 Jul;18(4):322–8. [PubMed] [Google Scholar]
  5. Moran LM, Taylor HG, Ganesalingam K, et al. Apolipoprotein E4 as a Predictor of Outcomes in Pediatric Mild Traumatic Brain Injury. J Neurotrauma. 2009 Sep;26(9):1489–95. [PMC free article] [PubMed] [Google Scholar]
  6. Terrell TR, Bostick RM, Abramson R, et al. APOE, APOE promoter, and Tau genotypes and risk for concussion in college athletes. Clin J Sport Med. 2008 Jan;18(1):10–7. [PubMed] [Google Scholar]

*28. Kambouris M, Ntalouka F, Ziogas G, Maffulli N. Predictive genomics DNA profiling for athletic performance. Recent Pat DNA Gene Seq. 2012 Dec;6(3):229–39. This article discusses the potential uses of athletes’ genetic profiles to personalize and optimize sport selection, training, and nutrition. [PubMed] [Google Scholar]

  1. Mokone GG, Gajjar M, September AV, et al. The guanine-thymine dinucleotide repeat polymorphism within the tenascin-C gene is associated with achilles tendon injuries. Am J Sports Med. 2005 Jul;33(7):1016–21. [PubMed] [Google Scholar]
  2. Raleigh SM, van der Merwe L, Ribbans WJ, et al. Variants within the MMP3 gene are associated with Achilles tendinopathy: possible interaction with the COL5A1 gene. British Journal of Sports Medicine. 2009 Jul;43(7):514–20. [PubMed] [Google Scholar]
  3. Moran CN, Vassilopoulos C, Tsiokanos A, et al. The associations of ACE polymorphisms with physical, physiological and skill parameters in adolescents. Eur J Hum Genet. 2006 Jan 4;14(3):332–9. [PubMed] [Google Scholar]
  4. Chiu L-L, Chen T-W, Hsieh SS, Hsieh L-L. ACE I/D, ACTN3 R577X, PPARD T294C and PPARGC1A Gly482Ser polymorphisms and physical fitness in Taiwanese late adolescent girls. J Physiol Sci. 2012 Jan 14;62(2):115–21. [PubMed] [Google Scholar]
  5. Ahmetov II, Gavrilov DN, Astratenkova IV, et al. The association of ACE, ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children. J Physiol Sci. 2012 Sep 16;63(1):79–85. [PubMed] [Google Scholar]
  6. Chiu L-L, Wu Y-F, Tang M-T, et al. ACTN3 Genotype and Swimming Performance in Taiwan. Int J Sports Med. 2011 Apr 6;32(06):476–80. [PubMed] [Google Scholar]
  7. Moran CN, Yang N, Bailey MES, et al. Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet. 2006 Oct 11;15(1):88–93. [PubMed] [Google Scholar]

*36. Roth SM. Recent Pat DNA Gene Seq. 3. Vol. 6. Bentham Science Publishers; 2012. Critical overview of applications of genetic testing in sport talent identification; pp. 247–55. This article discusses the use and potential implications of genetic testing in sport talent identification with special emphasis on the limitations to and potential pitfalls of the practice. [PubMed] [Google Scholar]

  1. Atlas Sports Genetics [Internet] [cited 2013 Jun 1]. Available from: http://www.atlasgene.com.
  2. Pompeo N. DNA to Play: Major League Baseball’s Use of DNA Testing on Central and South American Prospects in the Age of the Genetic Information Nondiscrimination Act of 2008. Health Matrix Clevel. 2011;21(2):627–53. [PubMed] [Google Scholar]
  3. Davids K, Baker J. Genes, environment and sport performance: why the nature-nurture dualism is no longer relevant. Sports Med. 2007;37(11):961–80. [PubMed] [Google Scholar]
  4. Roth SM. Genes and talent selection. In: Bouchard C, Hoffman EP, editors. Genetic and Molecular Aspects of Sport Performance.Chapter 31. Blackwell Publishing; 2011. pp. 362–72. [Google Scholar]
  5. Wackerhage H, Miah A, Harris RC, et al. Genetic research and testing in sport and exercise science: A review of the issues. Journal of Sports Sciences. 2009 Sep;27(11):1109–16. [PubMed] [Google Scholar]

 

全文結束

Add Comment
運動表現科學角落 - 將科學化、數據化以及研究實證帶到運動賽場上,讓運動員不再只是盲練,從而降低傷害更提升表現。

聯絡我們

請在此輸入您的聯絡資訊
我們將會盡快與您聯繫

或是撥打免費專線: