耐力運動員心率變異性監測實踐與應用 (下) | Practices and Applications of Heart Rate Variability Monitoring in Endurance Athletes
耐力運動員心率變異性監測的實踐與應用 (下)
Practices and Applications of Heart Rate Variability Monitoring in Endurance Athletes
基於每日HRV的訓練程序
HRV導向訓練
HRV指導訓練處方的使用已在文獻中進行了研究,並在現實世界中用於制定訓練決策[99-103]。大多數和這種方法的相關研究都將訓練計劃與一組根據每日HRV分數而變化的訓練計劃(包括更高強度的訓練)進行比較。個體靜息HRV 基線通常在3天到4週時間內建立[99, 100]。HRV指導訓練的方案各不相同,但通常僅當HRV分數落在正常範圍內時才會進行中等和較高強度的鍛煉 [99, 104]。否則會制訂較低強度訓練和/或休息日,直到HRV恢復正常。
生理正常範圍的定義是基於個人的,使用幾天內確定的最小的有價值的變化[100, 105]。 HRV4Training 和 EliteHRV [106]、ithlete[107] 和 Welltory [108] 等許多應用程序已經過驗證,可用於測量每日 HRV,運動員可以使用它們來建立基線水平並評估每日恢復狀態。人們已針對最小價值改變的替代方法進行研究。 例如HRV增加或保持不變,則進行劇烈訓練,而當HRV下降時,則規定減少訓練負荷[101, 103]。HRV高於正常範圍的增加的解釋仍然是一個爭論話題,並且個體反應差異可能會在這當中有所作用[13]。
對HRV導向的跑者訓練系統回顧研究發現,基於HRV的組別比遵循預定訓練計劃組的表現有著更大改善[99]。在大多數情況下,HRV導向訓練會減少中強度和高強度訓練的數量。另一項審查研究囊括了健康自行車手、跑步者和滑雪者,從未經訓練到精英級別,發現HRV導向訓練與預確定的訓練一樣有效,但並未優於預排程訓練[104]。對耐力運動員的HRV導向訓練薈萃分析研究發現,次最大運動量的改善顯著更大,而各組之間的表現和最大運動量沒有顯著差異 [109]。 然而,對於HR導向訓練組,積極反應者比例較高,消極反應者較少。對長跑運動員進行為期8週的干預訓練發現,與傳統訓練組相比,HRV導向訓練組在3公里計時賽中取得了更大進步[100]。在休閒活動人群中,與預計劃組相比,使用兩種不同的HRV導向訓練方法可讓VO2峰值有類似增益,儘管研究中的女性透過較少的劇烈強度訓練獲得了相同益處[101]。另一項研究也支持HRV導向訓練組的最大跑步速度和VO2峰值 [103]。
經耐力訓練男性當中,與預排程週期塊訓練模式相比,在時域和頻域中的峰值跑步速度、反向運動跳躍和靜息HRV都有更大的改善,但在3公里跑步表現沒有差異[110]。在一項針對專業跑步者的研究中,HRV導向訓練提高了跑步機峰值速度和峰值呼吸交換率 [111]。與先前研究不同,HRV導向組透過較少的VT1以上的訓練次數而達到相等程度表現,而本研究中HRV導向組在VT1和VT2 之間花費了更多的時間。HRV導向訓練可能對某些能夠進行更高強度訓練的跑者可能會更有益。
在使用HRV導向訓練時,相關從業者應意識到隨著訓練量或強度的改變,HRV 會出現不同的變化[112]。 此外,值得注意的是,所有這些研究都將預排程訓練計劃與 HRV導向訓練進行比較,然而運動員經常與運動專業人士(例如教練)合作,他們可能會根據運動員反應進行訓練調整。
HRV和不良適應狀態
除了用於訓練目標設定外,HRV還被建議作為一種用以檢測和評估不良適應狀態嚴重程度的手段,包括疾病 [113, 114]、過度訓練 [15, 115] 和腦震盪 [18]。 腦震盪是近年來運動科學研究中備受關注的一個領域,在團體運動運動員中更為普遍。 另一方面,疾病和過度訓練在耐力運動員中則是相當常見。
過度訓練被認為是訓練與其他壓力和恢復之間的不平衡結果,會導致睡眠紊亂、疲勞、情緒混亂、荷爾蒙濃度改變、長期肌肉酸痛和運動能力下降等症狀[116]。過度訓練綜合症的檢測具相對挑戰性,由於沒有明確的診斷標準,它常常成為排除性診斷[117]。根據觀察,過度訓練的運動員在仰臥位和直立位時 HRV都會降低 [15]。另一方面,一項對經歷過度訓練症狀的初級越野滑雪運動員案例研究顯示,仰臥位時的心率和總功率有所增加[118]。另一項研究表示,在過度訓練的耐力運動員中,RR間隔長度和心率功率之間的相關性更強[115]。 在一組6日強化訓練營的精英皮划艇運動員中,最大攝氧量和最大乳酸下降,但HRV測量值卻沒有變化 [119]。這表明可以使用 HRV來區分過度訓練和短期訓練疲勞。
近期一項統合分析發現HRV與炎症過程(如疾病)之間存在負相關性[113]。 在重症監護環境中,HRV抑制已被用來預測疾病嚴重程度和死亡風險[120, 121]。即便不是太嚴重的疾病也可能影響HRV。在精英級游泳運動員中,HRV 在上呼吸道或肺部感染的幾週內受到抑制[114]。然而,研究中對於HRV預測能力尚不清楚;感染前一周,HRV數值於仰臥位較高,但直立位時較低。
HRV監測識別早期疾病和/或過度訓練的成功潛力仍有待確定。面對此類健康問題,尚不清楚是否可以利用HRV來成功適應和調整,以減少疾病的嚴重程度或持續時間以及其他醫療問題。不過以HRV導向的訓練以及使用HRV和其他生物識別標記監測健康狀況會是幫助運動員和教練應對此類挑戰的潛在有用工具。
非傳統HRV監測選項
運動心率變異性
運動會導致心率增加,以滿足增加的代謝需求,而時間和頻率則會讓HRV測量值急劇下降 [19, 122–125]。儘管方法之間以及運動模式之間可能存在差異,但一般來看HRV數值會隨運動強度呈劑量反應關係下降。在中等強度下,HRV達到相對穩定的較低數值,並且隨著運動強度級別的進一步增加呈很小變化 [19]。 因此,這些測量值很難在運動員經常訓練的強度級別運動背景下進行解釋。運動期間的HRV評估並不像靜息HRV評估那麼常見。然而,它相當可靠且具重複性,儘管在極高強度下其可靠性可能會受到影響[126]。
運動HRV的非線性測量已用於監測和調整離散訓練期間的運動強度。更具體來看,表短期相關性的DFAα1值於0.75時被認為相當於使用通氣數據測量的有氧閾值 [127]。心率變異記錄器和FatMaxxer等監測應用程式使用實時計算的DFAα1來調整運動強度 [127, 128]。儘管它可以“去趨勢”並根據運動強度的變化進行調整,但對於這些應用程式,建議測量時保持相同運動強度至少兩分鐘。
運動後心率變異性
正如前述有關影響每日HRV因素的部分所言,運動停止後HRV的恢復可能因運動次數而異。運動後監測HR和HRV恢復可以為了解訓練中的壓力提供有價值的見解。HRV波動通常會在運動後一小時內恢復到基線[19,70,71,75,77,78,129–133]。如果強度明顯較低,甚至可能會在運動後立即出現HRV 增加[71, 134]。 然而,高於VT1強度運動似乎會導致更大或更長時間的HRV抑制[70,78,133,135]。
Hynynen等人指出夜間監測HRV可能也頗具價值性[80]。研究顯示夜間HRV與運動後HRV抑制之間存在中度至強相關性。運動後HRV也可能與無氧適能的改善相關,因為運動後RMSSD與九週訓練計劃後重複衝刺能力的改善相關[136]。 據我們所知,運動後HRV監測作為HRV導向訓練工具部分尚未得到探索,但可以作為耐力運動員的有用工具,特別是對於每日進行高訓練量和/或多次訓練的運動員而言。
未來發展方向
有鑑於教練和運動員可以獲得大量數據和指標,人們對生理預測或根據可使用可穿戴技術和其他方式收集的一系列變量來預測結果或表現的興趣越來越濃厚。這些技術或許能量化訓練期外的壓力和恢復狀態,用以改善訓練負荷量化問題[137]。但顯然HRV本身並非呈現線性預測表現,因為據觀察,HRV在峰值階段可能會略為下降 [13]。
此外,耐力表現變化並不總是與HRV或用於監測訓練的其他指標(例如反向運動跳躍)變化相互呼應[138]。然而,縱向觀察個體模式和對訓練的反應,可以了解個體對訓練和其他刺激的生理反應。一項研究當中,HRV與訓練負荷測量之間的相關性在個體之間並不顯著,但在使用重複測量相關性時出現個體內部顯著性[139]。此研究和其他研究支持這樣的觀點,即透過縱向HRV監測可以改善運動處方。一些業餘跑者可能會可透過大量耐力運動而非更高強度來得到更多改善,這些差異與夜間HRV變化相關[140]。訓練期開始時的基線HRV也可能與非職業人群訓練改善有關[141]。在嘗試使用HRV與生理和心理變量相結合來指導訓練時,應考慮這些因素。對於HRV生物反饋訓練等實行探索已成功用於提升HRV [8],也可以將其作為一種訓練評估工具。
先前將 HRV應用到運動中的研究主要集中在耐力運動主題上。雖然該族群也是本次審查重點,但值得注意的是,耐力運動員也經常進行阻力運動和無氧活動。目前對於在團隊運動環境中使用HRV導向阻力訓練或運動處方所知之甚少。一項針對從事高強度功能訓練的業餘活躍成年人研究發現,雖然9週內高強度訓練減少了20%,但在以HRV導向訓練時,身體組成、力量和攝氧量峰值也有類似於高強度訓練的改善[142]。阻力運動會出現HRV抑制,但可能 [143] 或可能不會 [144]的結果可有效區分不同運動次數帶來的疲勞差異。HRV恢復的時間線可能與其他變量不同,包括反向運動跳躍和心理變量。Nuuttila等人[135] 根據運動強度觀察到反運動跳躍和運動後HRV的不同疲勞恢復模式。同樣,Vacher等人[145]注意當感知壓力和恢復呈非線性變化時,HRV仍呈線性變化。因此,HRV數據可以被視為有助於改進表現預測、增強訓練和比賽策略以及完善耐力運動科學的一部分拼圖。
結論
各級耐力運動員將HRV進行多種應用使用。測量和處理HRV數據工具的可用性和易於訪問性的提升為進一步增強培訓和比賽實行帶來了希望和可能性。然而,運動員和教練員應注意使用嚴格方法來控制所收集數據的質量,並了解可能影響HRV測量的關鍵變量。日常HRV監測和HRV導向訓練等做法是成熟且有前景的應用,耐力運動員應該加以考慮使用。最後,HRV的使用應被理解為生理調節和適應的複雜網絡當中一部分。未來的研究走向將整合包括HRV在內的各種指標,有望進一步加深我們對耐力表現和訓練的理解,並幫助各體耐力運動員對自我生理機能有細緻入微的了解。
作者聲明本研究無利益衝突
研究文獻
- Billman GE. Heart rate variability – a historical perspective. Front Physiol 2011; 2: 86. doi:10.3389/fphys.2011.00086
- Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996; 93: 1043–1065
- Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol 2014; 5: 1040. doi:10.3389/fpsyg.2014.01040
- Ernst G. Heart-rate variability – more than heart beats? Front Public Health 2017; 5: 240. doi:10.3389/fpubh.2017.00240
- Rea RF, Eckberg DL. Carotid baroreceptor-muscle sympathetic relation in humans. J Appl Physiol 1987; 253: R929–R934
- Eckberg DL. Nonlinearities of the human carotid baroreceptor-cardiac reflex. Circ Res 1980; 47: 208–216. doi:10.1161/01.RES.47.2.208
- Denver JW, Reed SF, Porges SW. Methodological issues in the quantification of respiratory sinus arrhythmia. Biol Psychol 2007; 74: 286–294. doi:10.1016/j.biopsycho.2005.09.005
- Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health 2017; 5: 258. doi:10.3389/ fpubh.2017.00258
- Nunan D, Sandercock GRH, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol 2010; 33: 1407–1417. doi:10.1111/j.1540-8159.2010.02841.x
- Blain G, Meste O, Blain A et al. Time-frequency analysis of heart rate variability reveals cardiolocomotor coupling during dynamic cycling exercise in humans. Am J Physiol Heart Circ Physiol 2009; 296: H1651–H1659. doi:10.1152/ajpheart.00881.2008
- Goldberger AL, West BJ. Fractals in physiology and medicine. Yale J Biol Med 1987; 60: 421–435
- Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med 2003; 33: 889–919. doi:10.2165/00007256-200333120-00003
- Plews D, Laursen P, Stanley J et al. Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sports Med 2013; 43: 773–781. doi:10.1007/s40279- 013-0071-8
- Schneider C, Hanakam F, Wiewelhove T et al. Heart rate monitoring in team sports – a conceptual framework for contextualizing heart rate measures for training and recovery prescription. Front Physiol 2018; 9: 639. doi:10.3389/fphys.2018.00639
- Mourot L, Bouhaddi M, Perrey S et al. Decrease in heart rate variability with overtraining: assessment by the Poincaré plot analysis. Clin Physiol Funct Imaging 2004; 24: 10–18
- Hynynen E, Uusitalo A, Konttinen N et al. Heart rate variability during night sleep and after awakening in overtrained athletes. Med Sci Sports Exerc 2006; 38: 313–317. doi:10.1249/01. mss.0000184631.27641.b5
- Pagaduan JC, Chen Y-S, Fell JW et al. A preliminary systematic review and meta-analysis on the effects of heart rate variability biofeedback on heart rate variability and respiration of athletes. J Complement Integr Med 2021. Online ahead of print. doi:10.1515/jcim-2020- 0528
- Senthinathan A, Mainwaring LM, Hutchison M. Heart rate variability of athletes across concussion recovery milestones: a preliminary study. Clin J Sport Med 2017; 27: 288–295. doi:10.1097/ JSM.0000000000000337
- Michael S, Graham KS, Davis GMO. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals–a review. Front Physiol 2017; 8: 301. doi:10.3389/fphys.2017.00301
- White DW, Raven PB. Autonomic neural control of heart rate during dynamic exercise: revisited. J Physiol 2014; 592: 2491–2500. doi:10.1113/jphysiol.2014.271858
- Levy MN. Sympathetic-parasympathetic interactions in the heart.Circ Res 1971; 29: 437–445. doi:10.1161/01.res.29.5.437
- Kannankeril PJ, Le FK, Kadish AH et al. Parasympathetic effects on heart rate recovery after exercise. J Investig Med 2004; 52: 394–401. doi:10.1136/jim-52-06-34
- Aubert A, Ramaekers D, Cuche Y et al. Effect of long term physical training on heart rate variability. Comput Cardiol 1996; 22: 17–20. doi:10.1109/CIC.1996.542462
- da Silva VP, de Oliveira NA, Silveira H et al. Heart rate variability indexes as a marker of chronic adaptation in athletes: a systematic review. Ann Noninvasive Electrocardiol 2015; 20: 108–118. doi:10.1111/anec.12237
- Bellenger CR, Fuller JT, Thomson RL et al. Monitoring athletic training status through autonomic heart rate regulation: a systematic review and meta-analysis. Sports Med 2016; 46: 1461–1486. doi:10.1007/ s40279-016-0484-2
- Buchheit M, Chivot A, Parouty J et al. Monitoring endurance running performance using cardiac parasympathetic function. Eur J Appl Physiol 2010; 108: 1153–1167. doi:10.1007/s00421-009-1317-x
- Cataldo A, Bianco A, Paoli A et al. Resting sympatho-vagal balance is related to 10 km running performance in master endurance athletes. Eur J Transl Myol 2018; 28: 1025–1033. doi:10.4081/ejtm.2018.7051
- Seely AJE, Macklem PT. Complex systems and the technology of variability analysis. Crit Care 2004; 8: R367–R384. doi:10.1186/cc2948
- Henriques T, Ribeiro M, Teixeira A et al. Nonlinear methods most applied to heart-rate time series: a review. Entropy (Basel) 2020; 22: 309
- Sassi R, Cerutti S, Lombardi F et al. Advances in heart rate variability signal analysis: joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Associationco-endorsed by the Asia Pacific Heart Rhythm Society. Europace 2015; 17: 1341–1353. doi:10.1093/europace/euv015
- Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol 2013; 4: 26. doi:10.3389/ fphys.2013.00026
- Lucini D, Marchetti I, Spataro A et al. Heart rate variability to monitor performance in elite athletes: criticalities and avoidable pitfalls. Int J Cardiol 2017; 240: 307–312. doi:10.1016/j.ijcard.2017.05.001
- Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 2000; 278: H2039–H2049. doi:10.1152/ ajpheart.2000.278.6.H2039
- Yentes JM, Hunt N, Schmid KK et al. The appropriate use of approximate entropy and sample entropy with short data sets. Ann Biomed Eng 2013; 41: 349–365. doi:10.1007/s10439-012-0668-3
- Peng CK, Havlin S, Stanley HE et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995; 5: 82–87. doi:10.1063/1.166141
- Heffernan KS, Sosnoff JJ, Fahs CA et al. Fractal scaling properties of heart rate dynamics following resistance exercise training. J Appl Physiol (1985) 2008; 105: 109–113. doi:10.1152/japplphysiol.00150.2008
- Giles D, Draper N, Neil W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur J Appl Physiol 2016; 116: 563–571. doi:10.1007/s00421-015-3303-9
- Plews DJ, Scott B, Altini M et al. Comparison of heart-rate-variability recording with smartphone photoplethysmography, Polar H7 chest strap, and electrocardiography. Int J Sports Physiol Perform 2017; 12: 1324–1328. doi:10.1123/ijspp.2016-0668
- Wang R, Blackburn G, Desai M et al. Accuracy of wrist-worn heart rate monitors. JAMA Cardiol 2017; 2: 104–106
- Gillinov S, Etiwy M, Wang R et al. Variable accuracy of wearable heart rate monitors during aerobic exercise. Med Sci Sports Exerc 2017; 49: 1697–1703. doi:10.1249/MSS.0000000000001284
- Lu G, Yang F. Limitations of oximetry to measure heart rate variability measures. Cardiovasc Eng 2009; 9: 119–125. doi:10.1007/s10558-009-9082-3
- Bryce RM, Sprague KB. Revisiting detrended fluctuation analysis. Sci Rep 2012; 2: 315. doi:10.1038/srep00315
- Pomeranz B, Macaulay RJ, Caudill MA et al. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 1985; 248: H151–H153. doi:10.1152/ajpheart.1985.248.1.H151
- Hnatkova K, Šišáková M, Smetana P et al. Sex differences in heart rate responses to postural provocations. Int J Cardiol 2019; 297: 126–134. doi:10.1016/j.ijcard.2019.09.044
- Rabbani M, Agha-Alinejad H, Gharakhanlou R et al. Monitoring training in women’s volleyball: supine or seated heart rate variability? Physiol Behav 2021; 240: 113537. doi:10.1016/j. physbeh.2021.113537
- Saul JP, Albrecht P, Berger RD et al. Analysis of long term heart rate variability: methods, 1/f scaling and implications. Comput Cardiol 1988; 14: 419–422
- Voss A. Longitudinal analysis of heart rate variability. J Electrocardiol 2007; 40: S26–S29. doi:10.1016/j.jelectrocard.2006.10.024
- Esco MR, Flatt AA. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommendations. J Sports Sci Med 2014; 13: 535–541
- Yamasaki Y, Kodama M, Matsuhisa M et al. Diurnal heart rate variability in healthy subjects: effects of aging and sex difference. Am J Physiol 1996; 271: H303–H310. doi:10.1152/ ajpheart.1996.271.1.H303
- Jarczok MN, Guendel H, McGrath J et al. Circadian rhythms of the autonomic nervous system: scientific implication and practical implementation. In: Svorc P (Ed). Chronobiology – The Science of Biological Time Structure. London: IntechOpen; 2019. doi:10.5772/ intechopen.86822
- Sappler N, Bauer A. Nocturnal heart rate variability: a population- based screening tool? Heart Rhythm 2022; 19: 640–641
- Mishica C, Kyröläinen H, Hynynen E et al. Evaluation of nocturnal vs. morning measures of heart rate indices in young athletes. PLoS One 2022; 17: e0262333
- Sacha J. Interaction between heart rate and heart rate variability. Ann Noninvasive Electrocardiol 2014; 19: 207–216. doi:10.1111/ anec.12148
- Gąsior JS, Sacha J, Pawłowski M et al. Normative values for heart rate variability parameters in school-aged children: simple approach considering differences in average heart rate. Front Physiol 2018; 9: 1495. doi:10.3389/fphys.2018.01495
- Sharma VK, Subramanian SK, Arunachalam V et al. Heart rate variability in adolescents – normative data stratified by sex and physical activity. J Clin Diagn Res 2015; 9: CC08–CC13. doi:10.7860/ JCDR/2015/15373.6662
- Ogliari G, Mahinrad S, Stott DJ et al. Resting heart rate, heart rate variability and functional decline in old age. CMAJ 2015; 187: E442–E449. doi:10.1503/cmaj.150462
- Stys A, Stys T. Current clinical applications of heart rate variability. Clin Cardiol 1998; 21: 719–724. doi:10.1002/clc.4960211005
- Tsai C-H, Ma H-P, Lin Y-T et al. Usefulness of heart rhythm complexity in heart failure detection and diagnosis. Sci Rep 2020; 10: 14916. doi:10.1038/s41598-020-71909-8
- Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev 2016; 64: 288–310. doi:10.1016/j.neubiorev.2016.03.007
- Altini M, Plews D. What is behind changes in resting heart rate and heart rate variability? A large-scale analysis of longitudinal measurements acquired in free-living. Sensors (Basel) 2021; 21: 7932. doi:10.3390/s21237932
- Bonnemeier H, Wiegand UKH, Brandes A et al. Circadian profile of cardiac autonomic nervous modulation in healthy subjects. J Cardiovasc Electrophysiol 2003; 14: 791–799. doi:https://doi. org/10.1046/j.1540-8167.2003.03078.x
- Kaewkannate K, Kim S. A comparison of wearable fitness devices. BMC Public Health 2016; 16: 433. doi:10.1186/s12889-016-3059-0
- Buchheit M. Monitoring training status with HR measures: do all roads lead to Rome? Front Physiol 2014; 5: 73. doi:10.3389/ fphys.2014.00073
- Pichot V, Busso T, Roche F et al. Autonomic adaptations to intensive and overload training periods: a laboratory study. Med Sci Sports Exerc 2002; 34: 1660–1666. doi:10.1097/00005768-200210000- 00019
- Pichot V, Roche F, Gaspoz J-M et al. Relation between heart rate variability and training load in middle-distance runners. Med Sci Sports Exerc 2000; 32: 1729–1736. doi:10.1097/00005768- 200010000-00011
- Deblauw JA, Crawford DC, Stein JA et al. Association of heart rate variability and simulated cycling time trial performance. J Sci Cycling 2022; 10: 25–33. doi:10.28985/1221.jsc.09
- Manzi V, Castagna C, Padua E et al. Dose-response relationship of autonomic nervous system responses to individualized training impulse in marathon runners. Am J Physiol Heart Circ Physiol 2009; 296: 1733–1740. doi:10.1152/ajpheart.00054.2009
- Iellamo F, Pigozzi F, Spataro A et al. Autonomic and psychological adaptations in Olympic rowers. J Sports Med Phys Fitness 2006; 46: 598–604
- Schmitt L, Regnard J, Desmarets M et al. Fatigue shifts and scatters heart rate variability in elite endurance athletes. PLoS One 2013; 8: e71588. doi:10.1371/journal.pone.0071588
- Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc 2007; 39: 1366–1373. doi:10.1249/mss.0b013e318060f17d
- Kaikkonen P, Nummela A, Rusko H. Heart rate variability dynamics during early recovery after different endurance exercises. Eur J Appl Physiol 2007; 102: 79–86. doi:10.1007/s00421-007-0559-8
- Myllymäki T, Rusko H, Syväoja H et al. Effects of exercise intensity and duration on nocturnal heart rate variability and sleep quality. Eur J Appl Physiol 2012; 112: 801–809. doi:10.1007/s00421-011-2034-9
- James DVB, Munson SC, Maldonado-Martin S et al. Heart rate variability: effect of exercise intensity on postexercise response. Res Q Exerc Sport 2012; 83: 533–539. doi:10.1080/02701367.2012.105 99142
- Panissa VLG, Cal Abad CC, Julio UF et al. High-intensity intermittent exercise and its effects on heart rate variability and subsequent strength performance. Front Physiol 2016; 7: 81. doi:10.3389/ fphys.2016.00081
- Burma JS, Copeland P, Macaulay A et al. Effects of high-intensity intervals and moderate-intensity exercise on baroreceptor sensitivity and heart rate variability during recovery. Appl Physiol Nutr Metab 2020; 45: 1156–1164. doi:10.1139/apnm-2019-0810
- Gladwell VF, Sandercock GRH, Birch SL. Cardiac vagal activity following three intensities of exercise in humans. Clin Physiol Funct Imaging 2010; 30: 17–22. doi:10.1111/j.1475-097X.2009.00899.x
- Parekh A, Lee CM. Heart rate variability after isocaloric exercise bouts of different intensities. Med Sci Sports Exerc 2005; 37: 599–605. doi:10.1249/01.mss.0000159139.29220.9a
- Mourot L, Bouhaddi M, Tordi N et al. Short- and long-term effects of a single bout of exercise on heart rate variability: comparison between constant and interval training exercises. Eur J Appl Physiol 2004; 92: 508–517. doi:10.1007/s00421-004-1119-0
- Hautala A, Tulppo MP, Mäkikallio TH et al. Changes in cardiac autonomic regulation after prolonged maximal exercise. Clin Physiol 2001; 21: 238–245. doi:10.1046/j.1365-2281.2001.00309.x
- Hynynen E, Vesterinen V, Rusko H et al. Effects of moderate and heavy endurance exercise on nocturnal HRV. Int J Sports Med 2010; 31: 428–432. doi:10.1055/s-0030-1249625
- Foulds HJA, Cote AT, Phillips AA et al. Characterisation of baroreflex sensitivity of recreational ultra-endurance athletes. Eur J Sport Sci 2014; 14: 686–694. doi:10.1080/17461391.2014.884169
- Grässler B, Thielmann B, Böckelmann I et al. Effects of different training interventions on heart rate variability and cardiovascular health and risk factors in young and middle-aged adults: a systematic review. Front Physiol 2021; 12. 657274
- Cunha FA, Midgley AW, Gonçalves T et al. Parasympathetic reactivation after maximal CPET depends on exercise modality and resting vagal activity in healthy men. Springerplus 2015; 4: 100. doi:10.1186/s40064-015-0882-1
- Solana-Tramunt M, Morales J, Buscà B et al. Heart-rate variability in elite synchronized swimmers. Int J Sports Physiol Perform 2019; 14: 464–471. doi:10.1123/ijspp.2018-0538
- Marsac J. Heart rate variability: a cardiometabolic risk marker with public health implications. Bull Acad Natl Med 2013; 197: 175–186
- Jandackova VK, Scholes S, Britton A et al. Healthy lifestyle and cardiac vagal modulation over 10 years: Whitehall II cohort study. J Am Heart Assoc 2019; 8: e012420. doi:10.1161/JAHA.119.012420
- Dettoni JL, Consolim-Colombo FM, Drager LF et al. Cardiovascular effects of partial sleep deprivation in healthy volunteers. J Appl Physiol (1985) 2012; 113: 232–236. doi:10.1152/japplphysiol.01604.2011
- Bourdillon N, Jeanneret F, Nilchian M et al. Sleep deprivation deteriorates heart rate variability and photoplethysmography. Front Neurosci 2021; 15: 642548. doi:10.3389/fnins.2021.642548
- Gonzalez Gonzalez J, Mendez Llorens A, Mendez Novoa A et al. Effect of acute alcohol ingestion on short-term heart rate fluctuations. J Stud Alcohol 1992; 53: 86–90. doi:10.15288/jsa.1992.53.86
- Spaak J, Tomlinson G, McGowan CL et al. Dose-related effects of red wine and alcohol on heart rate variability. Am J Physiol Heart Circ Physiol 2010; 298: H2226–H2231. doi:10.1152/ajpheart.00700.2009
- Chen C-L, Tang J-S, Li P-C et al. Immediate effects of smoking on cardiorespiratory responses during dynamic exercise: arm vs. leg ergometry. Front Physiol 2015; 6: 376. doi:10.3389/ fphys.2015.00376
- Vanoli E, Cerati D, Pedretti RF. Autonomic control of heart rate: pharmacological and nonpharmacological modulation. Basic Res Cardiol 1998; 93: 133–142. doi:10.1007/s003950050239
- Verkuil B, Brosschot JF, Tollenaar MS et al. Prolonged non-metabolic heart rate variability reduction as a physiological marker of psychological stress in daily life. Ann Behav Med 2016; 50: 704–714. doi:10.1007/s12160-016-9795-7
- Dishman RK, Nakamura Y, Garcia ME et al. Heart rate variability, trait anxiety, and perceived stress among physically fit men and women. Int J Psychophysiol 2000; 37: 121–133. doi:10.1016/S0167- 8760(00)00085-4
- Chalmers JA, Quintana DS, Abbott MJA et al. Anxiety disorders are associated with reduced heart rate variability: a meta-analysis. Front Psychiatry 2014; 5: 80. doi:10.3389/fpsyt.2014.00080
- Kemp AH, Quintana DS, Gray MA et al. Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry 2010; 67: 1067–1074. doi:10.1016/j. biopsych.2009.12.012
- Hall M, Vasko R, Buysse D et al. Acute stress affects heart rate variability during sleep. Psychosom Med 2004; 66: 56–62. doi:10.1097/01.PSY.0000106884.58744.09
- O’Donnell K, Brydon L, Wright CE et al. Self-esteem levels and cardiovascular and inflammatory responses to acute stress. Brain Behav Immun 2008; 22: 1241–1247. doi:10.1016/j.bbi.2008.06.012
- Düking P, Zinner C, Reed JL et al. Predefined vs. data-guided training prescription based on autonomic nervous system variation: a systematic review. Scand J Med Sci Sports 2020; 30: 2291–2304. doi:10.1111/sms.13802
- Vesterinen V, Nummela A, Heikura I et al. Individual endurance training prescription with heart rate variability. Med Sci Sports Exerc 2016; 48: 1347–1354. doi:10.1249/MSS.0000000000000910
- Kiviniemi AM, Hautala AJ, Kinnunen H et al. Daily exercise prescription on the basis of HR variability among men and women. Med Sci Sports Exerc 2010; 42: 1355–1363
- Tornberg J, Ikaheimo TM, Kiviniemi A et al. Physical activity is associated with cardiac autonomic function in adolescent men. PLoS One 2019; 14: e0222121. doi:10.1371/journal.pone.0222121
- Kiviniemi AM, Hautala AJ, Kinnunen H et al. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol 2007; 101: 743–751. doi:10.1007/s00421-007-0552-2
- Ruiz JPM, Rubio-Arias J, Clemente-Suarez VJ et al. Effectiveness of training prescription guided by heart rate variability versus predefined training for physiological and aerobic performance improvements: a systematic review and meta-analysis. Appl Sci 2020; 10: 8532. doi:10.3390/app10238532
- Plews DJ, Laursen PB, Kilding AE et al. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison. Eur J Appl Physiol 2012; 112: 3729–3741. doi:10.1007/s00421-012-2354-4
- Stone JD, Ulman HK, Ulman HK et al. Assessing the accuracy of popular commercial technologies that measure resting heart rate and heart rate variability. Front Sport Act Living 2021; 3: 585870. doi:10.3389/fspor.2021.585870
- mining ultra-short-term heart rate variability. J Hum Kinet 2013; 39: 85–92. doi:10.2478/hukin-2013-0071
- Moya-Ramon M, Mateo-March M, Peña-González I et al. Validity and reliability of different smartphones applications to measure HRV during short and ultra-short measurements in elite athletes. Comput Methods Programs Biomed 2022; 217: 106696. doi:10.1016/j. cmpb.2022.106696
- Düking P, Zinner C, Trabelsi K et al. Monitoring and adapting endurance training on the basis of heart rate variability monitored by wearable technologies: a systematic review with meta-analysis. J Sci Med Sport 2021; 24: 1180–1192
- Nuuttila O-P, Nikander A, Polomoshnov D et al. Effects of HRV-guided vs. predetermined block training on performance, HRV and serum hormones. Int J Sports Med 2017; 38: 909–920. doi:10.1055/s-0043-115122
- Carrasco-Poyatos M, González-Quílez A, Altini M et al. Heart rate variability-guided training in professional runners: effects on performance and vagal modulation. Physiol Behav 2022; 244. doi:10.1016/j.physbeh.2021.113654
- Nuuttila O-P, Ari N, Heikki K et al. Physiological, perceptual, and performance responses to the 2-wk block of high- versus low- intensity endurance trainingFlatt AA, Esco MR. Validity of the ithlete smart phone application for deter. Med Sci Sports Exerc 2022; 54: 851–860. doi:10.1249/mss.0000000000002861
- Williams DP, Koenig J, Carnevali L et al. Heart rate variability and inflammation: a meta-analysis of human studies. Brain Behav Immun 2019; 80: 219–226. doi:10.1016/j.bbi.2019.03.009
- Hellard P, Guimaraes F, Avalos M et al. Modeling the association between HR variability and illness in elite swimmers. Med Sci Sports Exerc 2011; 43: 1063–1070. doi:10.1249/MSS.0b013e318204de1c
- Kiviniemi AM, Tulppo MP, Hautala AJ et al. Altered relationship between R-R interval and R-R interval variability in endurance athletes with overtraining syndrome. Scand J Med Sci Sports 2014; 24: e77–e85. doi:10.1111/sms.12114
- Lehmann M, Foster C, Keul J. Overtraining in endurance athletes: a brief review. Med Sci Sports Exerc 1993; 25: 854–862. doi:10.1249/00005768-199307000-00015
- Meeusen R, Duclos M, Foster C et al. Prevention, diagnosis, and treatment of the overtraining syndrome:joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc 2013; 45: 186–205. doi:10.1249/MSS.0b013e318279a10a
- Hedelin R, Wiklund U, Bjerle P et al. Cardiac autonomic imbalance in an overtrained athlete. Med Sci Sports Exerc 2000; 32: 1531–1533
- Hedelin R, Kenttä G, Wiklund U et al. Short-term overtraining: effects on performance, circulatory responses, and heart rate variability. Med Sci Sports Exerc 2000; 32: 1480–1484. doi:10.1097/00005768- 200008000-00017
- Norris PR, Ozdas A, Cao H et al. Cardiac uncoupling and heart rate variability stratify ICU patients by mortality: a study of 2088 trauma patients. Ann Surg 2006; 243: 804–814. doi:10.1097/01. sla.0000219642.92637.fd
- Winchell RJ, Hoyt DB. Spectral analysis of heart rate variability in the ICU: a measure of autonomic function. J Surg Res 1996; 63: 11–16. doi:10.1006/jsre.1996.0214
- Tulppo MP, Makikallio TH, Takala TE et al. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol Heart Circ Physiol 1996; 271: H244–H252. doi:10.1152/ ajpheart.1996.271.1.h244
- Pichon AP, De Bisschop C, Roulaud M et al. Spectral analysis of heart rate variability during exercise in trained subjects. Med Sci Sports Exerc 2004; 36: 1702–1708. doi:10.1249/01. MSS.0000142403.93205.35
- Perini R, Orizio C, Baselli G et al. The influence of exercise intensity on the power spectrum of heart rate variability. Eur J Appl Physiol Occup Physiol 1990; 61: 143–148. doi:10.1007/BF00236709
- Sandercock GRH, Brodie DA. The use of heart rate variability measures to assess autonomic control during exercise. Scand J Med Sci Sports 2006; 16: 302–313
- McNarry MA, Lewis MJ. Heart rate variability reproducibility during exercise. Physiol Meas 2012; 33: 1123–1133. doi:10.1088/0967- 3334/33/7/1123
- Rogers B, Giles D, Draper N et al. A new detection method defining the aerobic threshold for endurance exercise and training prescription based on fractal correlation properties of heart rate variability. Front Physiol 2021; 11: 1806
- Gronwald T, Rogers B, Hoos O. Fractal correlation properties of heart rate variability: a new biomarker for intensity distribution in endurance exercise and training prescription? Front Physiol 2020; 11: 1152
- Cabral-Santos C, Giacon TR, Campos EZ et al. Impact of high- intensity intermittent and moderate-intensity continuous exercise on autonomic modulation in young men. Int J Sports Med 2016; 37: 431–435. doi:10.1055/s-0042-100292
- Castrillon CIM, Miranda RAT, Cabral-Santos C et al. High-intensity intermittent exercise and autonomic modulation: effects of different volume sessions. Int J Sports Med 2017; 38: 468–472. doi:10.1055/s-0042-121898
- Martinmäki K, Rusko H. Time-frequency analysis of heart rate variability during immediate recovery from low and high intensity exercise. Eur J Appl Physiol 2008; 102: 353–360. doi:10.1007/ s00421-007-0594-5
- Terziotti P, Schena F, Gulli G et al. Post-exercise recovery of autonomic cardiovascular control: a study by spectrum and cross-spectrum analysis in humans. Eur J Appl Physiol 2001; 84: 187–194. doi:10.1007/s004210170003
- Perkins SE, Jelinek HF, Al-Aubaidy HA et al. Immediate and long term effects of endurance and high intensity interval exercise on linear and nonlinear heart rate variability. J Sci Med Sport 2017; 20: 312–316. doi:10.1016/j.jsams.2016.08.009
- Raczak G, Pinna GD, La Rovere MT et al. Cardiovagal response to acute mild exercise in young healthy subjects. Circ J 2005; 69: 976–980
- Nuuttila O-P, Kyröläinen H, Häkkinen K et al. Acute physiological responses to four running sessions performed at different intensity zones. Int J Sports Med 2021; 42: 513–522. doi:10.1055/a-1263-1034
- Buchheit M, Millet GP, Parisy A et al. Supramaximal training and postexercise parasympathetic reactivation in adolescents.Med Sci Sports Exerc 2008; 40: 362–371. doi:10.1249/mss.0b013e31815aa2ee
- Treff G, Leppich R, Winkert K et al. The integration of training and off-training activities substantially alters training volume and load analysis in elite rowers. Sci Rep 2021; 11: 17218. doi:10.1038/ s41598-021-96569-0
- Nuuttila OP, Nummela A, Häkkinen K et al. Monitoring training and recovery during a period of increased intensity or volume in recreational endurance athletes. Int J Environ Res Public Health 2021; 18: 2401. doi:10.3390/ijerph18052401
- Davletyarova K, Vacher P, Nicolas M et al. Associations between heart rate variability–derived indexes and training load. J Strength Cond Res 2022; 36: 2005–2010. doi:10.1519/JSC.0000000000003760
- Vesterinen V, Häkkinen K, Laine T et al. Predictors of individual adaptation to high-volume or high-intensity endurance training in recreational endurance runners. Scand J Med Sci Sports 2016; 26: 885–893. doi:10.1111/sms.12530
- Vesterinen V, Häkkinen K, Hynynen E et al. Heart rate variability in prediction of individual adaptation to endurance training in recreational endurance runners. Scand J Med Sci Sports 2013; 23: 171–180. doi:10.1111/j.1600-0838.2011.01365.x
- Deblauw JA, Drake NB, Kurtz BK et al. High-intensity functional training guided by individualized heart rate variability results in similar health and fitness improvements as predetermined training with less effort. J Funct Morphol Kinesiol 2021; 6: 102. doi:10.3390/ jfmk6040102
- Pareja-Blanco F, Rodríguez-Rosell D, Sánchez-Medina L et al. Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin Physiol Funct Imaging 2017; 37: 630–639. doi:10.1111/cpf.12348
- De Souza JC, Tibana RA, Cavaglieri CR et al. Resistance exercise leading to failure versus not to failure: effects on cardiovascular control. BMC Cardiovasc Disord 2013; 13: 105. doi:10.1186/1471- 2261-13-105
- Vacher P, Filaire E, Mourot L et al. Stress and recovery in sports: effects on heart rate variability, cortisol, and subjective experience. Int J Psychophysiol 2019; 143: 25–35. doi:10.1016/j. ijpsycho.2019.06.011
Add Comment
You must be logged in to post a comment.